Publications

Publications

Published Peer-Reviewed Manuscripts:

[28] Adeniran, M. A., Oladunjoye, M. A., Doro, K. O. (2024). Assessing the use of electrical resistivity for monitoring crude oil contaminant distribution in unsaturated coastal sands under varying salinity. Geosciences, 14 (11), 308. https://doi.org/10.3390/geosciences14110308

[27] Cristino, K., Doro, K. O., Armstrong A., Forbes, S., Ribereau-Gayon, A., Bank, C-G. (2024). Electrical resistivity tomography of simulated graves with buried human and pig remains. Forensic Science International. https://doi.org/10.1016/j.forsciint.2024.112248

[26] Adeniran, M. A., Oladunjoye, M. A., Doro, K. O. (2024). Electrical resistivity imaging of crude oil contaminant in coastal soils – A laboratory sandbox study. Journal of Applied Geophysics. https://doi.org/10.1016/j.jappgeo.2024.105516

[25] Armstrong A., Doro, K. O., Cristino, K., Ribereau-Gayon, A., Forbes, S., Wadsworth, W. T. D., Bank, C-G. (2024). Comparison of GPR signals over simulated clandestine graves with domestic pigs (Sus Scrofa domesticus) and human remains. Journal of Forensic Sciences. https://doi.org/10.1111/1556-4029.15622

[24] Machado-Silva, F., Weintraub, M., Ward, N., Doro, K.O., Regier, P.J., Ehosioke, S., Thomas, S.P., Peixoto, R.B., Sandoval, L., Forbrich, I. and Kemner, K.M. (2024). Short-term groundwater level fluctuations drive subsurface redox variability. Environmental Science & Technology, 58, 14687–14697. https://doi.org/10.1021/acs.est.4c01115

[23] Driba, D. L., Emmanuel, E. D., Doro, K. O. (2024). Predicting wetland soil properties using machine learning, geophysics, and soil measurement data. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-024-03801-1

[22] Ehosioke, S., Adebayo, M. B., Bailey, V. L., Pioxoto, R. B., Emmanuel, E. D., Machado-Silva, F., Regier, P. J., Spanbauer, T., Thomas, S. P., Ward, N. D., Weintraub, M. N., Doro, K. O. (2024). Geophysical methods reveal the soil architecture and subsurface stratigraphic heterogeneities across land-lake interfaces along Lake Erie. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-024-03787-w

[21]Kaizad F. P., Kenton A. R., Zheng J., Regier P., Machado-Silva F., Bond-Lamberty B.,  Chen, X., Day, D. J.,  Doro, K. O., Kaufman, M. H., Kovach, M.,  McDowell, N., McKever, S. A., Megonigal, J. P., Norris, C. G.,  O’Meara, T., Peixoto, R. B., Rich, R.,  Thornton, P., Kemner, K. M., Ward, N. D., Weintraub, M. N., Bailey, V. L. (2024). Time to anoxia: Observations and predictions of oxygen drawdown following coastal flood events. Geoderma, 444, 116854. https://doi.org/10.1016/j.geoderma.2024.116854

[20] Emmanuel, E. D., Slater, L. D., Doro, K. O. (2024). Exploring limitations in the induced polarization versus surface conductivity relationship in the case of wetland soils. GEOPHYSICS, 89 (2), 1 – 19. https://doi.org/10.1190/geo2023-0345.1

[19] Adebayoa, M. B.**, Bailey, V. L., Chen, X., Hopple, A. M., Jiang, P., Li, B., Li, Z., Martin-Haydena, J. M., Megonigal, P. J., Regier, P. J., Rich, R., Stegen, J. C., Smith, R., Ward, N. D., Woodard, S. C., Doro, K. O. (2023). A hydrogeophysical framework to assess infiltration during a simulated ecosystem-scale flooding experiment. Journal of Hydrology, 626, Part A (130243). https://doi.org/10.1016/j.jhydrol.2023.130243

[18] Ogunkoya, A. O.**, Martin-Hayden, J. M., Fisher, T. G., Doro, K. O. (2023). An improved conceptual hydrogeological model of a post-glacial aquifer system using geophysical and geological datasets. Environ. Earth Sci. 82 (493). https://doi.org/10.1007/s12665-023-11197-3

[17] Emmanuel, E. D.**, Doro, K. O., Iserhien-Emekeme, R. E., Atakpo, E. A. (2023). Using geophysics to guide the selection of suitable sites for establishing sustainable earthen fishponds in the Niger-Delta region of Nigeria. Heliyon, 9, 6, E17618. https://doi.org/10.1016/j.heliyon.2023.e17618 

[16] Jekayinfa, S. M., Oladunjoye, M. A., Doro, K. O. (2023). Effects of groundwater flow on the distribution of bitumen contaminants in a shallow coastal plain sand aquifer. Journal of African Earth Sciences, 28, 104946. https://doi.org/10.1016/j.jafrearsci.2023.104946

[15] Emmanuel, E. D., Lenhart, C. F., Weintraub, M. N., Doro, K. O. (2023). Estimating soil properties distribution at a restored wetland using electromagnetic imaging and limited soil core samples. . Wetlands 43, 39. https://doi.org/10.1007/s13157-023-01686-3

[14] Adeniran, M. A., Oladunjoye, M. A., Doro, K. O. (2023). Soil and groundwater contamination by crude oil spillage: A review and implications for remediation projects in Nigeria. Frontiers in Environmental Sciences, 11 – 2023. doi: 10.3389/fenvs.2023.1137496

[13] Hopple, A. M., Doro, K. O., Bailey, V. L., Bond-Lamberty, B., McDowell, N., Morris, K., Myers-Pigg, A., Pennington, S. C., Regier, P., Rich, R., Sengupta, A., Smith, R., Stegen, J., Ward, N. D., Woodard, S. C., Megonigal, J. P. (2023). Attaining freshwater and estuarine-water soil saturation in an ecosystem-scale coastal flooding experiment. Environmental Monitoring & Assessment, 195, 423. https://doi.org/10.1007/s10661-022-10807-0

[12] Jekayinfa, S. M., Oladunjoye, M. A., Doro, K. O. (2023). A review of the occurrence, distribution, and impact of bitumen seeps on soil and groundwater in parts of southwestern Nigeria. Environmental Monitoring & Assessment, 195, 351. https://doi.org/10.1007/s10661-023-10960-0

[11] Doro, K. O., Adegboyega, C. O., Aizebeokhai, A. P., Oladunjoye, M. A. (2023). The Ibadan Hydrogeophysics Research Site (IHRS) – An observatory for studying hydrological heterogeneities in a crystalline basement aquifer in Southwestern Nigeria. Water, 15(3), 433; https://doi.org/10.3390/w15030433

[10] Jekayinfa, S. M., Oladunjoye, M. A., Doro, K. O. (2023). Imaging the distribution of bitumen contaminants in shallow coastal plain sands in Southwestern Nigeria using electrical resistivity. Environ. Earth Sci. 82 (55). https://doi.org/10.1007/s12665-022-10718-w 

[9] Doro, K. O., Stoikopoulos, N. P., Bank, C-G., Ferris, F. G. (2022). Self‑potential time series reveal emergent behavior in soil organic matter dynamics. Sci Rep 12, 13531. https://doi.org/10.1038/s41598-022-17914-5

[8] Doro, K. O., Emmanuel, E. D., Adebayo, M. B., Bank, C-G., Wescott, D. J., Mickleburgh, H. L. (2022). Time-lapse electrical resistivity tomography imaging of buried human remains in simulated mass and individual graves. Frontiers in Environmental Sciences, 10: 882496 . doi: 10.3389/fenvs.2022.882496

[7] Doro, K. O., Kolapkar, A. M., Bank, C-G., Wescott, D. J., Mickleburgh, H. L. (2022). Geophysical imaging of buried human remains in simulated mass and single graves: Experiment design and results from pre-burial to six months after burial. Forensic Science International, 335 – 111289. https://doi.org/10.1016/j.forsciint.2022.111289

[6] Becker, A. M., Becker, R. H., Doro, K. O. (2021). Locating drainage tiles at a wetland restoration site within the Oak Openings region of Ohio, United States using UAV and land based geophysical techniques. Wetland 41, 116. https://doi.org/10.1007/s13157-021-01495-6 

[5] Doro, K. O., Deng, E. A.*, Bank, C-G (2020): Gradient magnetometer datasets and MATLAB numerical code for simulating buried firearms at a controlled field site. Data in Brief, 31 – 106050. https://doi.org/10.1016/j.dib.2020.106050

[4] Deng, E. A.*, Doro. K. O., Bank, C-G. (2020): Suitability of magnetometry to detect clandestine buried firearms from a controlled field site and numerical modeling. Forensic Science International, 314 – 110396. https://doi.org/10.1016/j.forsciint.2020.110396

[3] Doro, K. O., Ehosioke, S., Aizebeokhai, A. P. (2020): Sustainable Soil and Water Resources Management in Nigeria: The Need for a Data Driven Policy. Sustainability, 12(10), 4204. https://doi.org/10.3390/su12104204

[2] Doro, K. O., Cirpka, O. A., Leven, C. (2015): Tracer tomography: Design concepts and field experiments using heat as tracer. Groundwater, 53:139 – 148. https://doi.org/10.1111/gwat.12299

[1] Doro, K. O., Leven, C., Cirpka, O. A. (2013): Delineating subsurface heterogeneity at a River Loop using geophysical and hydrogeological methods. Environ. Earth Sci., 69 (2) 335 – 348 doi:10.1007/s12665-013-2316-0

Book Chapter and Reports

[2] Hanson, R. B., Kruse, S., Comas, X., Doro, K. O., Holmes, T., Knight, R., Lyon, L., McDaris, J., Minsley, B., Morris, I., Tribaldos, V. R., Slater, L., Tsai, V., Zhang, C. (2022). Defining research and teaching priorities that could be advanced through a near-surface geophysics center. Earth and Space Science Open Archive. https://doi.org/10.1002/essoar.10512087.1

[1] Cirpka, O. A., Leven, C., Schwede, R., Doro, K. O., Bastian, P., Ippisch, O., Klein, O., Patzelt, A. (2014): “Tomographic Methods in Hydrogeology.” In: Weber M., Münch U. (eds) Tomography of the Earth’s Crust: From Geophysical Sounding to Real-Time Monitoring. Advanced Technologies in Earth Sciences. Springer, Cham https://doi.org/10.1007/978-3-319-04205-3_9

Extended Abstracts:

[4] Adebayo, M.B., Ehosioke, S., Emmanuel, E. D., Hopple, A. M., Regier, P., Megonigal, J. P., Ward, N. D., Bailey V. L., Doro, K. O. (2023). Time-lapse electrical resistivity and induced polarization monitoring of a simulated ecosystem coastal flooding experiment. SEG Technical Program Expanded Abstracts. 1169 – 1173. https://doi.org/10.1190/image2023-3906870.1
 
[3] Adebayo, M. B., Jiang, P.,  Chen, X., Hopple, A. M., Megonigal, P. J., Shuai, P., Doro, K. O. (2022). Quantifying infiltration in a simulated rainfall event using geophysical measurements and an ATS-based flow model. SEG Technical Program Extended Abstract 2022. https://doi.org/10.1190/image2022-3750979.1
 

[2] Doro, K. O., Amar Kolapkar, Anna M. Becker (2021). Using shallow subsurface geophysical models to guide restoration of old agricultural fields in Northwestern Ohio. SEG 2021 Annual Meeting Extended Abstract. https://doi.org/10.1190/segam2021-3576450.1

[1] Doro, K. O., Adegboyega, C. O.*, Aizebeokhai, A. P., Oladunjoye, M. A. (2020). Hydrological variability in   crystalline basement aquifers – insight from a first Hydrogeophysics Research Site in Nigeria. EAGE Near Surface Geophysics 2020 Extended Abstract. EarthDoc. DOI: https://doi.org/10.3997/2214-4609.202020123